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Let CT := supPm̀=1R` ��`, where the supremum is taken over vetors (R1; R2; : : : ; Rm) offeasible rates form soure-destination pairs, and �` is the distane between the `-th soureand its destination. Call this distane-weighted sum-apaity the transport apaity of thenetwork. We show that:(i) CT = O(n) is an upper bound on the apaity of any planar network if either thereis any absorption, i.e.,  > 0, or the path loss exponent Æ > 3, and eah node issubjet to an individual power onstraint Pind. For a regular planar network wherethe nodes are loated on a square integer lattie, the optimal transport apaityis CT = �(n). It an be ahieved by multi-hop operation: Pakets an simply berelayed from node to node, with all interferene simply treated as noise at eah hop.(ii) For every 12 < Æ < 1, and 1 < � < 1Æ , there is a family of networks with nodes loatedon a line, suh that CT = �(n�) is the optimal transport apaity when there is noabsorption, i.e.,  = 0. The optimal strategy is oherent multi-stage relaying withinterferene anellation { all upstream nodes oherently transmit to help eah stageof relaying, and all reeivers employ interferene anellation at eah stage.(iii) A given rate vetor for a set of soure-destination pairs an be supported in a planarnetwork if the traÆ an be routed in a multi-hop way suh that the total traÆto be relayed by any node is less than a ertain (��), where �� is an upper boundon the distane of all hops, under the individual power onstraint Pind, when  > 0or Æ > 1. If n soure-destination pairs are randomly hosen, then a regular planarnetwork with n nodes an simultaneously support a rate R` = 
( 1pn log n) for everysoure-destination pair `, with probability approahing one as n!1.(iv) The total power used by the entire network bounds the transport apaity: CT �Ptotal if  > 0 or Æ > 3.(v) However, the transport apaity an be unbounded even at �xed total power if  = 0and Æ < 32 .(vi) We provide an expliit rate for the general Gaussian multiple relay hannel with asingle soure-destination pair, whih is ahievable by oherent multi-stage relayingwith interferene anellation.Similar results are provided for linear networks.1 IntrodutionThe fous of this paper is on wireless networks, that is, on networks formed by nodes withradios. This inludes ad ho networks, urrently the subjet of great interest, the protools forwhih are under intense development [1, 2, 3, 4, 5, 6℄. As their name implies, ad ho networksan be set up without any pre-existing wired infrastruture that may be either apital intensiveor simply not feasible in a mobile environment, as for example in a network for automobiles.Wireless networks may also be used to interonnet embedded devies whose proliferation rateis faster than PCs. With eah embedded devie funtioning as a sensor or an atuator, in2
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addition to having omputational apability, the future may see large orhestras of ontrolsystems played over the ether and ontrolling our physial environment [7℄.Sine so muh of this depends on wireless networking, it is important to understand whatsuh networks are apable of doing, and how to operate them to maximize their apabilities.Thus we seek an information theory for wireless networks to guide us in this proess { the goalof this paper.In ontrast to wireline networks, wireless networks do not ome with ready made links.Instead, they only onsist of nodes radiating energy. Links, if suh a notion even exists, haveto be fashioned out of the ether by nodes hoosing signals and power levels for radiation. Twofundamental questions that arise are:i) How muh information an wireless networks transport?ii) How should one operate wireless networks?1.1 The oean of ignoraneAn attempt to address these issues was made in [8℄ under an assumption on how the tehnologyoperates. However, to an information theorist, the answers there are not onlusive as to whatare the ultimate limits to feasibility. The reason is that, in [8℄, all interferene is essentiallyregarded as noise, and models onsidered there presuppose that signals or pakets are or-retly reeived only if either there are no \ollisions" with other pakets being simultaneouslytransmitted by other nodes in the viinity of the reeiver, or the reeived signal-to-noise-plus-interferene ratio (SINR) is large enough, or the reeived rate is related to the SINR (seeGupta [9℄ for more on the latter). However, assumptions and onstruts suh as \ollision," or\signal-to-noise-plus-interferene ratio," are arbitrary. While they may well model how urrenttehnology operates, e.g., WaveLan ards, and thus tell us what is feasible with suh tehnol-ogy, they do not tell us what are the ultimate limits to information transfer in future wirelessnetworks. The reason is simply that interferene need not be interferene { it an arry in-formation. For example, it is well known from even the simple model of two transmitters andtwo reeivers, see Figure 3, that if there is exessive interferene from an interfering transmit-ter, then that is good, beause the interfering signal an �rst be deoded perfetly, and thensubtrated from the reeived signal, thus eliminating the interferene.Thus, one wishes to study wireless networks without making preoneived assumptionsabout how they are to operate. There is however a universe of possibilities. Nodes maybroadast simultaneously to several reeivers, or several reeivers may simultaneously transmitto a ertain reeiver (multiple aess), or a node an serve as a relay, et. However, these modesof ooperation only srath the surfae, and do not ome lose to exhausting the possibilities forinteration between a large number of nodes in a network. A group of nodes ould ooperatesomehow in anelling the interferene of another group of transmitters at a third group ofreeivers, and so on. Nodes an simultaneously serve several funtions of relaying, broadast,3
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interferene anelling, et. There are just too many ways in whih a plethora of nodes anooperate with eah other. More possibilities exist than an be dreamt of.Thus it is that one turns to information theory for an answer to the question: How muhinformation an wireless networks transport?It is a triumph of information theory that the apaity regions for some systems have beenharaterized, as for example the Gaussian broadast hannel [10, 11, 12, 13℄ shown in Figure 1,and the Gaussian multiple aess hannel [14, 15℄ shown in Figure 2. Reently, for a networkwith a single soure-destination pair, the asymptoti rate has been haraterized as the numberof nodes in a bounded domain is inreased, while exluding them from open neighborhoods ofthe soure and destination; see [16℄.
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mFigure 2: The Gaussian multiple aess hannel.However, as observed in [17℄, the union between information theory and networks is notwholly onsummated. The apaity region of even the simple four node system with two souresand two reeivers shown in Figure 3, the so alled interferene hannel originally studied byShannon (see [18℄ [19℄), is unknown when the interfering powers are moderate rather than largeor small. Also unknown is the apaity of the simplest relay hannel [20, 21, 22℄ shown inFigure 4, onsisting of just three nodes, a soure, a relay, and a destination. Even in a simplefour node network with just two parallel relays, shown in Figure 5, strategies whih are quitedi�erent in nature have to be onsidered for di�erent parameter values [23℄.Given this oean of ignorane, what an one then say about muh more ompliated networksof the type shown in Figures 6 or 7, where there are several soure-destination pairs amongan arbitrarily large �nite number of nodes on the plane or line, all ooperating in whateverways are imaginable to maximize information transfer? One really needs a more large-sale4
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Figure 4: The simplest relay hannel.information theory that an inform us as to what are the limits to information transfer innetworks and also, importantly, how one is to operate them. This motivates the subjet ofthe present paper, where our goal is to preisely address omplex wireless networks of the typeshown in Figures 6 or 7.The remainder of this paper is organized as follows. In Setion 2, we detail the modelsonsidered, and in Setion 3 the main results, with nothing but proofs in Setion 4. Someonluding remarks are made in Setion 5, and some open issues, whih bear examination andwhih may lead to a more omplete theory, are mentioned.2 Models onsideredThe wireless network models onsidered in this paper have the following ingredients:1. A �nite set N of n nodes loated on a plane.
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2. Let �ij be the distane between any two nodes i; j 2 N with minimum separation distane�min := mini6=j �ij > 0.3. Every node has a reeiver and a transmitter. At time instants t = 1; 2; : : : ; node i 2 Nsends Xi(t) and reeives Yi(t) withYi(t) =Xj 6=i e��ijXj(t)�Æij + Zi(t);where Zi(t), i 2 N , t = 1; 2; : : : are Gaussian i.i.d. random variables with mean zero andvariane �2. The onstant Æ > 0 will be alled the path loss exponent, while  � 0 will bealled the absorption onstant. A positive  generally prevails exept for transmission ina vauum, and orresponds to a loss of 20 log10 e db/meter; see [24℄.4. Denote by Pi � 0 the power used by node i. We will study two separate types ofonstraints on fP1; P2; : : : ; Png:Total Power Constraint Ptotal: Pni=1 Pi � Ptotal,orIndividual Power Constraint Pind: Pi � Pind for i = 1; 2; : : : ; n.5. The network an have several soure-destination pairs (s`; d`), ` = 1; : : : ; m, where s`; d`are nodes in N . If m = 1, then there is only a single soure-destination pair, whih wewill simply denote by (s; d).Essentially, this is the network version of the lassial AWGN hannel, with signals at-tenuated by distane, and possibly multiple soure-destination pairs. The model expliitlyinorporates the distane between nodes, and signal attenuation as a funtion of distane.2.1 The planar and linear settings onsideredWe will onsider four settings for wireless networks.Planar networksWe onsider n nodes loated on a two-dimensional plane, with the only restrition on theloations being that the minimum separation between any two nodes is �min > 0; see Figure 6.We all suh a network a planar network.Linear networksIn this ase we suppose that the n nodes are loated on a straight line, again with minimumseparation distane �min; see Figure 7. We all suh a network a linear network. The hief6
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Figure 6: A planar network: n nodes loated on a two-dimensional plane, with minimumseparation distane �min.reason for onsidering linear networks is that the proofs are easier to state and omprehendthan in the planar ase, and an be generalized to the planar ase. Also, the linear ase mayhave some utility for, say, networks of ars on a highway, sine its saling laws are di�erent.
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. . . . . . . . ..Figure 7: A linear network: n nodes loated on a line, with minimum separation distane �min.Regular planar networksBy this we mean a square ontaining n nodes loated at the points (i; j) for 1 � i; j � pn; seeFigure 8. This setting will be used mainly to exhibit ahievability of some apaities, i.e., innerbounds.
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Regular linear networksHere we onsider n nodes loated on a straight line, at positions 1; 2; : : : ; n; see Figure 9. Thissetting will also be used mainly to exhibit ahievability results.
.

1 2 1+ii n

. . . . . . . . . .. .Figure 9: A regular linear network: n nodes loated on a line at 1; 2; : : : ; n.2.2 The transport apaityLet (Rs1d1 ; Rs2d2 ; : : : ; Rsmdm) be a vetor of feasible rates for the m soure-destination pairs.(The preise de�nition of a feasible rate vetor is given in Setion 3.1). For brevity, we willdenote R` := Rs`d`, and �` := �s`d`. It is traditional in information theory to study the apaityregion, whih is the set of all suh feasible vetor rates.We will however also onsider the distane-weighted sum-apaity introdued in [8℄,CT := sup(R1;R2;::: ;Rm) mX̀=1 R` � �`;and all it the transport apaity of the network. The units in whih it is measured is bit-meters/seond, or bit-meters/slot. When one bit has been suessfully reeived by a destinationat a distane of one meter from the soure of that bit, we say that the network has pumped onebit-meter. It is analogous to the man-miles/year metri onsidered, for example, by airlines.This transport apaity is of interest for two di�erent reasons. First, we will show, underonditions detailed in the sequel, that regardless of how many and whih soure-destinationpairs are ative, and the throughput requirements of eah pair, the transport apaity follows asaling law. That is, it satis�es a onservation law and is thus a onstraint on what the wirelessnetwork an deliver, regardless of whether it is of prima faie interest in its own right.The seond reason is that it is indeed of interest in its own right. It is a natural quantitythat allows us to ompare apples with apples in multi-hop networks, and avoids double ountingthe rate supplied to a longer path as two separate rates for two of its sub-paths.3 The main resultsOur main results are the following:(i) The best ase transport apaity for planar networks with individual poweronstraints follows a �(n) saling law when either there is absorption, i.e.,8
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 > 0, or the path loss exponent Æ > 3.1The following result shows that O(n) is an upper bound for all planar networks:Theorem 3.1 Consider any planar network under the individual power onstraint Pind.Suppose that either there is some absorption in the medium, i.e.,  > 0, or there is noabsorption at all but the path loss exponent Æ > 3. Then its transport apaity is upperbounded as follows: CT � 1(; Æ; �min)Pind�2 � n; where (1)1(; Æ; �min) := 22Æ+72�2Æ+1min e��min=2(2� e��min=2)(1� e��min=2) if  > 0;:= 22Æ+5(3Æ � 8)(Æ � 2)2(Æ � 3)�2Æ�1min if  = 0 and Æ > 3: (2)
This proves that the \square-root saling law" of [8℄ ontinues to hold without makingany assumptions on how the network is to operate.2 It thus aptures the ultimate limitsof what is ahievable without making any pre-oneived assumptions on the nature oftehnology.That this O(n) upper bound is tight is aptured by the following theorem, whih showsthat it an be ahieved by a regular planar network. Let S(x) denote the Shannonfuntion: S(x) := 12 log(1 + x):Theorem 3.2 In a regular planar network with either  > 0 or Æ > 1, and individualpower onstraint Pind, the following network transport apaity is ahievable:CT � S � e�2Pind2(; Æ)Pind + �2� � n;1We use Knuth's notation: f = O(g) if lim supn!+1 f(n)g(n) < +1; f = 
(g) if g = O(f); f = �(g) iff = O(g) as well as g = O(f). Thus, all O(�) results are upper bounds, all 
(�) results are lower bounds, andall �(�) results are sharp estimates for the optimal apaity.2The reason why the square-root itself is missing in our statement is due to the fat that here we have notnormalized the area of the domain to be 1 square meter. In [8℄, the preise order is O(pAn), where A is thearea of the domain. Due to the minimum distane between nodes being positive, the area for a planar networkhas to grow at least linearly in the number of nodes n.9
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where 2(; Æ) := 4(1 + 4)e�2 � 4e�42(1� e�2) if  > 0;:= 16Æ2 + (2� � 16)Æ � �(Æ � 1)(2Æ � 1) if  = 0 and Æ > 3:From the above two results we see that, in the very best ase, a planar network an attaina transport apaity saling law of �(n).When an a set of rates (R1; R2; : : : ; Rm) be supported by a planar network? It is enoughthat the traÆ an be routed in a multi-hop manner over a variety of routes suh that nonode is overloaded.Theorem 3.3 A set of rates (R1; R2; : : : ; Rm) an be supported by a planar networkif, for some ��, the traÆ an be routed in a multi-hop manner (with a single soure-destination pair's traÆ possibly arried over many paths) suh that no hop is longerthan ��, and every node has to relay less than S � e�2��Pind��2Æ(3(;Æ;�min)Pind+�2)�, where3(; Æ; �min) := 23+2Æe��min�1+2Æmin if  > 0;:= 22+2Æ�2Æmin(Æ � 1) if  = 0 and Æ > 1:What is the situation when n soure-destination pairs are randomly hosen? The followingresult shows that every one of the n randomly hosen soure-destination pairs in a regularplanar network an be provided a rate R` = 
( 1pn log n) for ` = 1; 2; : : : ; n, with probabilityapproahing one as n!1, yielding a transport apaity 
� nplog n� as a onsequene.Theorem 3.4 Consider a regular planar network with either  > 0 or Æ > 3, and in-dividual power onstraint Pind. The n soure-destination pairs are randomly hosen asfollows: Every soure s` is hosen as the node nearest to a randomly (uniformly i.i.d.)hosen point in the domain, and similarly for every destination d`. Thenlimn!1Prob(R` = pn logn is feasible for every ` 2 f1; 2; : : : ; ng) = 1for some  > 0. Consequently, a transport apaity ofCT = 
( nplogn)is supported with probability approahing one as n!1.10
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The following is the orresponding result for linear networks.Theorem 3.5 For any linear network, if either  > 0 or Æ > 2, then the transportapaity is upper bounded as follows:CT � 4(; Æ; �min)Pind�2 � n; where4(; Æ; �min) = 2e�2�min(1� e��min)2(1� e�2�min)�2Æ�1min if  > 0;= 2Æ(Æ2 � Æ � 1)(Æ � 1)2(Æ � 2)�2Æ�1min ; if  = 0 and Æ > 2: (3)(ii) Multi-hop operation is optimal when attenuation is large.We an use the above results to answer how wireless networks should be operated. Forexample, should one operate wireless networks in a multi-hop mode where pakets aresimply relayed from node to node, with all interferene simply regarded as noise at eahhop? Or should one use more sophistiated strategies where nodes oherently ooperateand use interferene anellation?This is a fundamental question beause multi-hop operation brings with it several prob-lems, e.g., the routing problem [1, 2, 3℄, the media aess ontrol problem [4, 6℄, the powerontrol problem [5℄, et., protools for whih are under onsideration in their appropriateresearh and development ommunities. On the other hand, other strategies may requiremulti-user detetion or interferene anellation or network-wide oherent ooperation.The strategies in the two ases are thus violently di�erent. Answering this question isfundamental to determining how to operate wireless networks, diretly a�ets the basidesign of the overall system, and determines all the subsequent ommuniation protoolsof interest. It is preisely the kind of question that one hopes to resolve by networkinformation theory.We show in Theorem 3.2 that when either there is any absorption in the medium, i.e., > 0, or the path loss exponent Æ > 3, then multi-hop operation is saling law optimal.At eah hop the paket is deoded with all interferene simply regarded as noise, andthen relayed to the next node.Suh operation an be ahieved with urrent o�-the-shelf tehnology, whih is thus prov-ably optimal in an information theoreti sense in at least ertain irumstanes.(iii) A �(n�) saling law with 1 < � < 2 is feasible under low attenuation withindividual power onstraints.When the attenuation is low, one an attain a transport apaity of �(n�) for 1 < � < 2even for linear networks. Obviously, this result holds for planar networks too, sine theyinlude linear networks as a speial ase.11
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Theorem 3.6 Consider  = 0 and individual power onstraint Pind. For every 12 < Æ <1,3 and 1 < � < 1Æ , there is a family of linear networks for whih the transport apaity isCT = �(n�): (4)This optimal transport apaity is attained by oherent multi-stage relaying with inter-ferene anellation { all upstream nodes oherently transmit to help at eah stage ofrelaying, and all reeivers employ interferene anellation at eah stage. This is there-fore an optimal strategy for information transmission.(iv) Coherent multi-stage relaying with interferene anellation is optimal for asingle soure-destination pair, when attenuation is low.For the networks in Theorem 3.6, sine the optimal transport apaity order of �(n�) isattained by oherent multi-stage relaying with interferene anellation, suh a sheme isthe optimal strategy for information transmission.Thus we see an interesting bifuration: At high attenuation, multi-hop operation is opti-mal, where all interferene an simply be regarded as noise. At low attenuation, oherentmulti-stage relaying with interferene anellation is optimal.(v) The transport apaity is bounded by the total power in networks with highattenuation.It is well known from Shannon's work that for a soure-destination pair (s`; d`), the rateR` is bounded by the reeived power at d`.What is interesting is that, in networks, there is a fundamental relationship between thetotal transmitted power Ptotal used by the entire network, and the transport apaity ofthe network:The transport apaity is bounded by the total transmitted power, when theattenuation is large.This is true irrespetive of how the nodes are loated, subjet only to a minimum sep-aration distane �min > 0, how many soure-destination pairs exist, and how they arehosen. Thus, the total power Ptotal available to the entire network plays a key role.Theorem 3.7 In any planar network, with either positive absorption, i.e.,  > 0, or withpath loss exponent Æ > 3, CT � 1(; Æ; �min)�2 � Ptotal; (5)where 1(; Æ; �min) is as in (2).3For a linear network with individual power onstraints, even if there is no absorption ( = 0), and even ifthere are an in�nite number of nodes, the total reeived power is �nite at every node if Æ > 1, or even if onlyÆ > 12 provided the soures are inoherent. That is, the night sky is dark.12
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The following is the orresponding result for linear networks.Theorem 3.8 If either  > 0 or Æ > 2 in any linear network, thenCT � 4(; Æ; �min)�2 � Ptotal; (6)where 4(; Æ; �min) is as in (3).(vi) At low attenuation unbounded transport apaity an be obtained for boundedtotal power.In ontrast to the high attenuation ase, when the attenuation is low, the transportapaity an be unbounded even with �nite total power.Theorem 3.9 (i) If there is no absorption, i.e.,  = 0, and the path loss exponentÆ < 3=2, then even with a �xed total power Ptotal, any arbitrarily large transport apaityan be supported by a regular planar network with a large enough number of nodes n.(ii) If  = 0 and Æ < 1, then even with a �xed total power Ptotal, any regular planar networkan support a �xed rate Rmin > 0 for any single soure-destination pair, irrespetive ofthe distane between them.The following is the orresponding result for linear networks.Theorem 3.10 (i) If  = 0 and Æ < 1, then even with a �xed total power Ptotal, anyarbitrarily large transport apaity an be supported by a regular linear network with alarge enough number of nodes n.(ii) If  = 0 and Æ < 1=2, then even with a �xed total power Ptotal, any regular linear net-work an support a �xed rate Rmin > 0 for any single soure-destination pair, irrespetiveof the distane between them.(vii) The Gaussian multiple relay hannel with a single soure-destination pair:Coherent relaying with interferene anellation, and an expliit ahievablerate.Consider a network of n nodes with �ij the attenuation from node i to node j (thenodes need not be on a plane, and in fat there need not be a notion of distane), andi.i.d. additive N(0; �2) noise at eah reeiver. Eah node has an upper bound on thepower available to it, whih may di�er from node to node. Suppose there is a singlesoure-destination pair (s; d). We all this the Gaussian multiple relay hannel.Consider the following strategy for ooperation: The nodes are divided into groups, withthe �rst group ontaining only the soure s, and the last group ontaining only the13
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destination d. Call the higher numbered groups as \downstream" groups, though theyneed not atually be loser to the destination. Nodes in group i for 1 � i � k � 1,dediate a portion of their power Pik to oherently transmit for the bene�t of the nodesin downstream groups. Eah node j employs interferene anellation, and uses jointlytypial deoding whih onforms with all the oherent transmissions of its upstream nodes.We all this strategy oherent multi-stage relaying with interferene anellation.We provide the following expliit expressions for the ahievable rate R. The �rst theoremaddresses the ase where eah relaying group onsists of only one node.Theorem 3.11 Consider the Gaussian multiple relay hannel with oherent multi-stagerelaying and interferene anellation. Consider M + 1 nodes, sequentially denoted by0; 1; : : : ;M , with 0 as the soure, M as the destination, and the other M � 1 nodesserving as M � 1 stages of relay. Then any rate R satisfying the following inequality isahievable from 0 to M :R < min1�j�M S0� 1�2 jXk=1  k�1Xi=0 �ijpPik!21A (7)where Pik � 0 satis�es PMk=i+1 Pik � Pi.Remark 3.1 For the network setting in Theorem 3.11, Theorem 3.1 in [25℄ shows thata rate R0 is ahievable if there exist some fR1; R2; � � � ; RM�1g suh thatRM�1 < S PRM;M�1�2 +PM�2`=0 PRM;`! ; andRm < min(S PRm+1;m�2 +Pm�1`=0 PRm+1;`! ; Rm+1 + minm+2�k�M S PRk;m�2 +Pm�1`=0 PRk;`!)for eah m = 0; 1; � � � ;M � 2, wherePRk;` 4=  X̀i=0 �ikpPi;`+1!2 for 0 � ` < k �M:From the above, reursively for m =M � 2;M � 1; � � � ; 0, it is easy to prove thatRm < minm+1�j�M S Pj�1k=m PRj;k�2 +Pm�1`=0 PRj;`! :For m = 0, this inequality is exatly (7), showing that we get a higher ahievable rate inTheorem 3.11. 14
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Theorem 3.12 Consider again the Gaussian multiple relay hannel using oherent multi-stage relaying with interferene anellation. Consider any M + 1 groups of nodes se-quentially denoted by N0;N1; : : : ;NM with N0 = fsg as the soure, NM = fdg as thedestination, and the other M �1 groups as M �1 stages of relay. Let ni be the number ofnodes in Group Ni, i 2 f0; 1; : : : ;Mg. Let the power onstraint for eah node in GroupNi be Pini � 0. Then any rate R satisfying the following inequality is ahievable from s tod: R < min1�j�M S0� 1�2 jXk=1  k�1Xi=0 �NiNjpPik=ni � ni!21A (8)where Pik � 0 satis�es PMk=i+1 Pik � Pi, and �NiNj := minf�k` : k 2 Ni; ` 2 Njg,i; j 2 f0; 1; : : : ;Mg.3.1 De�nition of feasible rate vetorsThe following de�nition of feasible rates is standard. It aptures the ompliated interplayspossible in a large number of nodes with multiple soure-destination pairs, and intrinsiallyallows for all ausal feedbaks, thus inluding all strategies for information transport.De�nition 3.1 In a wireless network with multiple soure-destination pairs (s`; d`), ` = 1; : : : ; m,a ((2TR1; : : : ; 2TRm); T; �T ) ode with total power onstraint Ptotal onsists of the following:1. m random variables W` with P (W` = k`) = 12TR` , for any k` 2 f1; 2; : : : ; 2TR`g, ` =1; : : : ; m.2. Funtions fs`;t : Rt�1 �f1; 2; : : : ; 2TR`g ! R1 ; t = 1; 2; : : : ; T for the soure nodes s`; ` =1; : : : ; m and fi;t : Rt�1 ! R1 ; t = 2; : : : ; T for all the other nodes i 62 fs`; ` = 1; : : : ; mg,suh thatXs`(t) = fs`;t(Ys`(1); : : : Ys`(t� 1);W`); t = 1; 2; : : : ; T; ` = 1; : : : ; m;Xi(1) = 0; Xi(t) = fi;t(Yi(1); : : : ; Yi(t� 1)); t = 2; 3; : : : ; T; for i 62 fs`; ` = 1; : : : ; mg;suh that the following total power onstraint holds:1T TXt=1 Xi2N X2i (t) � Ptotal; a.s. (9)3. m deoding funtions gd` : RT ! f1; 2; : : : ; 2TR`g for the destination nodes d`; ` =1; : : : ; m. 15
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4. The maximal probability of error:�T = maxk`2f1;2;::: ;2TR`g`=1;2;::: ;m Probfgd`(Y Td` ) 6= k`jW` = k`g; (10)where Y Td` := (Yd`(1); Yd`(2); : : : ; Yd`(T )).De�nition 3.2 A rate vetor (R1; : : : ; Rm) is said to be feasible for the m soure-destinationpairs (s`; d`); ` = 1; : : : ; m, with total power onstraint Ptotal, if there exists a sequene of((2TR1 ; : : : ; 2TRm); T; �T ) odes satisfying the total power onstraint Ptotal, suh that �T ! 0 asT !1.Next is the de�nition of the transport apaity of a network.De�nition 3.3 The network transport apaity CT with onstraint Ptotal isCT := sup(R1;::: ;Rm) feasible mX̀=1 R` � �`;where �` is the distane between s` and d`.The above de�nitions are presented in the ontext of a total power onstraint Ptotal. Withindividual power onstraint Pind, one simply needs to replae the onstraint (9) by1T TXt=1 X2i (t) � Pind; a.s., for i 2 N ; (11)and orrespondingly modify the rest of the de�nitions.4 Nothing but proofsWe begin with a max-ow min-ut bound.4.1 A max-ow min-ut lemmaThe following max-ow min-ut bound will be used to establish ertain upper bounds on thefeasible rate vetors.De�nition 4.1 Let N1 � N . A soure-destination pair (s`; d`) is said to ut N1 if d` 2 N1but s` =2 N1. 16
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Lemma 4.1 Let N1 be any subset of N . If (R1; : : : ; Rm) is a feasible rate vetor with asequene of ((2TR1; : : : ; 2TRm); T; �T ) odes with �T ! 0 as T !1, thenXf`:d`2N1;s` =2N1gR` � 12�2 lim infT!1 P reN1 (T ); (12)where P reN1 (T ) is the average power reeived by N1, from outside N1, for the ode((2TR1 ; : : : ; 2TRm); T; �T ), i.e.,P reN1 (T ) := 1T TXt=1 Xi2N1E0�Xj =2N1 Xj(t)�Æij 1A2 : (13)Proof. First we introdue some notation:Ui(t) := Xj =2N1 Xj(t)�Æij ; i 2 N1; (14)Vi(t) := Ui(t) + Zi(t); i 2 N1: (15)Denote WN dest�ut1 := fW` : (s`; d`) uts N1g, N soure1 := fs` : s` 2 N1; ` = 1; : : : ; mg andWN soure1 := fWi; i 2 N soure1 g. We adopt the notation:VN1(t) := fVi(t); i 2 N1g; V tN1 := fVN1(�); � = 1; : : : ; tg;and similarly for Y , U , X, and Z.Now we prove that the following forms a Markov hainWN dest�ut1 ! fV TN1 ;WN soure1 g ! fY TN1; WN soure1 g; (16)by showing that any element in Y TN1 is a deterministi funtion of fV TN1;WN soure1 g. This an beeasily seen sine for any i 2 N1, 2 � t � T ,Yi(t) = Vi(t) +Xj2N1j 6=i Xj(t)�Æij= Vi(t) + Xj2N1nNsoure1j 6=i fj;t(Y t�1j )�Æij + Xj2Nsoure1j 6=i fj;t(Y t�1j ;Wj)�Æij ;and for t = 1, Yi(1) = Vi(1) + Xj2Nsoure1j 6=i fj;1(Wj)�Æij :17
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Hene, by Fano's Lemma and (16), we haveH(WN dest�ut1 jV TN1;WN soure1 ) � 1 + T�T =: T�T ;where �T ! 0 as T !1.Thus, we have the following hain of inequalities:T m1Xk=1 R`k = H(WN dest�ut1 ) = I(WN dest�ut1 ;V TN1;WN soure1 ) +H(WN dest�ut1 jV TN1;WN soure1 )� I(WN dest�ut1 ;V TN1;WN soure1 ) + T�T= I(WN dest�ut1 ;WN soure1 ) + I(WN dest�ut1 ;V TN1jWN soure1 ) + T�T= 0 + h(V TN1 jWN soure1 )� h(V TN1jWN dest�ut1 ;WN soure1 ) + T�T� h(V TN1)� h(V TN1 jWN dest�ut1 ;WN soure1 ) + T�T ;with h(V TN1 jWN dest�ut1 ;WN soure1 )= TXt=1 h(VN1(t)jVN1(1); : : : ; VN1(t� 1);WN dest�ut1 ;WN soure1 )� TXt=1 h(VN1(t)jVN1(1); : : : ; VN1(t� 1); XN dest�ut1 (t);WN dest�ut1 ;WN soure1 )= TXt=1 h(VN1(t)jXN dest�ut1 (t))� TXt=1 h(VN1(t)jUN1(t));where the last two (in)equalities follow from the following two Markov hains:fV t�1N1 ;WN dest�ut1 ;WN soure1 g ! XN dest�ut1 (t)! VN1(t); XN dest�ut1 (t)! UN1(t)! VN1(t):
18
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Hene, we have T m1Xk=1 R`k � h(V TN1)� TXt=1 h(VN1(t)jUN1(t)) + T�T= h(V TN1)� TXt=1 Xi2N1 h(Zi(t)) + T�T� TXt=1 Xi2N1 h(Vi(t))� TXt=1 Xi2N1 h(Zi(t)) + T�T= TXt=1 Xi2N1[h(Vi(t))� h(Vi(t)jUi(t))℄ + T�T= TXt=1 Xi2N1 I(Ui(t);Vi(t)) + T�T� TXt=1 Xi2N1 12 log�1 + EU2i (t)�2 � + T�T� 12�2 TXt=1 Xi2N1EU2i (t) + T�T :Finally, letting T !1 in the above, and notiing �T ! 0, we have (12). �4.2 The total power bounds the transport apaityWe begin with the ase of linear networks.Proof of Theorem 3.8 First we onsider the ase  = 0 and Æ > 2.Let ai�min denote the oordinate of the node i. Apply Lemma 4.1 to the following subsets:N�q = fi 2 N : �1 < ai � qg; N+q = fi 2 N : q � ai <1g; q 2 Z; (17)and we have for any q 2 Z,2�2 �RN�q � lim infT!1 1T TXt=1 Xi2N�q E0�Xj =2N�q Xj(t)(aj � ai)Æ�Æmin1A2 ; (18)2�2 �RN+q � lim infT!1 1T TXt=1 Xi2N+q E0�Xj =2N+q Xj(t)(ai � aj)Æ�Æmin1A2 : (19)19
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Above, RN�q is the sum of the rates of all the pairs whih ut N�q . RN+q is similarly de�ned.Now, any soure-destination pair (s`; d`) with distane �` between s` and d` uts at leastb�`=�min subsets amongN�q ;N+q ; q 2 Z. For example, if ad` = a and as` = a+�`=�min (the asewhere as` < ad` being analyzed similarly), then (s`; d`) uts the subsetsN�q ; q = ba+1; : : : ; ba+�`=�min. By de�nition, R` is a summand in every RN�q ; q = ba+ 1; : : : ; ba+ �`=�min. Henewe have (noting �` � �min)mX̀=1 R` � �` � 2�min mX̀=1 R` � b�`=�min � 2�min +1Xq=�1RN�q + 2�min +1Xq=�1RN+q : (20)Now we prove that +1Xq=�1RN�q � 4(; Æ; �min)4�min�2 Ptotal: (21)By (18), we only need to show that1T TXt=1 +1Xq=�1 Xi2N�q E0�Xj 62N�q Xj(t)(aj � ai)Æ1A2 � 4(; Æ; �min)�2Æ�1min2 Ptotal; (22)with Xj(t) satisfying the total power onstraint1T TXt=1 Xj2N X2j (t) � Ptotal; a.s.: (23)The intuition behind the inequality (22) is that the summation of the reeived powers is upperbounded by the total transmitted power.We now establish (22) for the ase where Æ > 2, as follows. By (23), for Æ > 2, we only needto prove that for any t,+1Xq=�1 Xi2N�q 0�Xj 62N�q Xj(t)(aj � ai)Æ1A2 � 4(; Æ; �min)�2Æ�1min2 P (t); (24)where P (t) :=Xi2N X2i (t): (25)First, we observe that the L.H.S. of (24) is a summation of in�nite terms of the basi form�jkXj(t)Xk(t), where �jk is the appropriate oeÆient. If every Xj(t)Xk(t) is replaed with the20
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larger value 12(X2j (t) +X2k(t)), it is easy to see thatL.H.S. of (24) �Xk2N0�dake�1Xq=�1 Xi2N�q Xj 62N�q 1(aj � ai)Æ(ak � ai)Æ1AX2k(t):This, together with (25), would imply (24), as long as for any k 2 N ,dake�1Xq=�1 Xi2N�q Xj 62N�q 1(aj � ai)Æ(ak � ai)Æ � 4(; Æ; �min)�2Æ�1min2 : (26)For Æ > 2, (26) is established by the following hain of inequalities: Letting aq 4= minj 62N�q ajand noting that mini6=j jai � ajj � 1, we haveL.H.S. of (26)� dake�1Xq=�1 Xi2N�q 1Xl=0 1(l + aq � ai)Æ 1(ak � ai)Æ� dake�1Xq=�1 Xi2N�q Æ � 1 + aq � ai(Æ � 1)(aq � ai)Æ 1(ak � ai)Æ= Xfi:ai<akg dake�1Xq=daie � 1(aq � ai)Æ + 1(Æ � 1)(aq � ai)Æ�1� 1(ak � ai)Æ� Xfi:ai<akg" 1Xl=1 1lÆ + 1Æ � 1 1Xl=1 1lÆ�1# 1(ak � ai)Æ� Æ3 � Æ2 � Æ(Æ � 1)2(Æ � 2) (27)= 4(; Æ; �min)�2Æ�1min2 ; (28)where we have used the fat that for any real a > 0 and � > 1,+1Xl=0 1(l + a)� � 1a� + Z 10 1(a+ x)� dx � � � 1 + a(� � 1)a� : (29)Hene (24) is established. 21
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Thus (21) follows. Similarly, we an prove+1Xq=�1RN+q � 4(; Æ; �min)4�min�2 Ptotal: (30)Finally, (6) follows from (20), (21) and (30).Next we onsider the ase  > 0. It is easy to see from the above that we only need to prove1T TXt=1 +1Xq=�1 Xi2N�q E0�Xj 62N�q e�(aj�ai)�minXj(t)(aj � ai)Æ 1A2 � 4(; Æ; �min)�2Æ�1min2 Ptotal;whih an be easily established sine for any k 2 N ,dake�1Xq=�1 Xi2N�q Xj 62N�q e�(aj�ai)�mine�(ak�ai)�min(aj � ai)Æ(ak � ai)Æ � e�2�min(1� e��min)2(1� e�2�min)= 4(; Æ; �min)�2Æ�1min2 : �Proof of Theorem 3.7. The proof is similar to that of Theorem 3.8. Hene, we only mentionthe di�erenes here.Consider �rst the ase  = 0 and Æ > 3.Let (ai�min2 ; bi�min2 ) denote the oordinates of node i. First, Lemma 4.1 is applied to thefollowing four lasses of subsets:N�q;1 = fi 2 N : �1 < ai � q;�1 < bi < +1g; q 2 Z; (31)N+q;1 = fi 2 N : q � ai < +1;�1 < bi < +1g; q 2 Z;N�1;q = fi 2 N : �1 < ai < +1;�1 < bi � qg; q 2 Z;N+1;q = fi 2 N : �1 < ai < +1; q � bi < +1g; q 2 Z:For example, for the lass (31), we have2�2 �RN�q;1 � lim infT!1 1T TXt=1 Xi2N�q;1E0� Xj =2N�q;1 Xj(t)�Æij 1A2 ; (32)where RN�q;1 is de�ned similarly to RN�q in the proof of Theorem 3.8. RN+q;1, RN�1;q and RN+1;qare also similarly de�ned.Now in the planar ase, for any soure-destination pair (s`; d`) with distane �` between s`and d`, it is easy to see that it uts at least d2�`=�mine subsets among N�q;1, N+q;1, N�1;q, N+1;q,22
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q 2 Z. Hene we have the following inequality:mX̀=1 R` � �` � �min mX̀=1 R` � d2�`=�mine� �min +1Xq=�1RN�q;1 + �min +1Xq=�1RN+q;1 + �min +1Xq=�1RN�1;q + �min +1Xq=�1RN+1;q : (33)Now, we prove that +1Xq=�1RN�q;1 � 1(; Æ; �min)4�min�2 Ptotal: (34)By (32), we only need to show that1T TXt=1 +1Xq=�1 Xi2N�q;1E0� Xj =2N�q;1 Xj(t)�Æij 1A2 � 1(; Æ; �min)2�min Ptotal; (35)or equivalently,1T TXt=1 +1Xq=�1 Xi2N�q;1E0� Xj 62N�q;1 Xj(t)[(aj � ai)2 + (bj � bi)2℄Æ=2(�min=2)Æ1A2
� 1(; Æ; �min)2�min Ptotal; (36)with Xj(t) satisfying the total power onstraint1T TXt=1 Xj2N X2j (t) � Ptotal a.s.: (37)The intuition behind the inequality (36) is that the summation of the reeived powers is upperbounded by the transmitted power.We now establish (36) for the ase where Æ > 3. By (37), for Æ > 3, we only need to provethat for any t,+1Xq=�1 Xi2N�q;10� Xj 62N�q;1 Xj(t)[(aj � ai)2 + (bj � bi)2℄Æ=21A2 � 1(; Æ; �min)�2Æ�1min22Æ+1 P (t); (38)where P (t) :=Xi2N X2i (t): (39)23
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After replaing eah Xj(t)Xk(t) by 12(X2j (t) + X2k(t)) in the L.H.S. of (38), we only need toprove that the oeÆient of any X2k(t) is bounded by 1(; Æ; �min)�2Æ�1min22Æ+1 , i.e., for any k 2 N ,dake�1Xq=�1 Xi2N�q;10� Xj 62N�q;1 1[(aj � ai)2 + (bj � bi)2℄Æ=2 1[(ak � ai)2 + (bk � bi)2℄Æ=21A� 1(; Æ; �min)�2Æ�1min22Æ+1 : (40)Using the fat that for any d0 � 21dÆ0 � 4� Z �4��4 Z 10 1(d20 + r2 � 2rd0 os �) Æ2 rdrd�;sine mini6=j [(aj � ai)2 + (bj � bi)2℄1=2 � 2, we have for any i 2 N�q;1, Æ > 2Xj 62N�q;1 1[(aj � ai)2 + (bj � bi)2℄Æ=2 � 4� Z �2��2 Z 1(aq�ai+1)_1 1xÆ xdxd�� 4(Æ � 2)[(aq � ai + 1) _ 1℄Æ�2 ;where aq := minj 62N�q;1 aj.Then we have for Æ > 3,L.H.S. of (40)� dake�1Xq=�1 Xi2N�q;1 4(Æ � 2)[(aq � ai + 1) _ 1℄Æ�2 1[(ak � ai)2 + (bk � bi)2℄Æ=2� Xfi:ai<akg dake�1Xq=daie 4(Æ � 2)[(aq � ai + 1) _ 1℄Æ�2 1[(ak � ai)2 + (bk � bi)2℄Æ=2� Xfi:ai<akg� 8Æ � 2 + 4Æ � 3� 1[(ak � ai)2 + (bk � bi)2℄Æ=2� � 8Æ � 2 + 4Æ � 3� 4� Z �2��2 Z 11 1xÆ xdxd�� � 8Æ � 2 + 4Æ � 3� 4Æ � 2= 1(; Æ; �min)�2Æ�1min22Æ+1 : 24
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Hene (38) is proved. Thus (34) follows. The remaining arguments are similar to the proofof Theorem 3.8.Next we onsider the ase  > 0. Similar to the linear ase, we only need to show that forany k 2 N ,dake�1Xq=�1 Xi2N�q;10� Xj 62N�q;1 e�[(aj�ai)2+(bj�bi)2 ℄1=2�min=2[(aj � ai)2 + (bj � bi)2℄Æ=2 e�[(ak�ai)2+(bk�bi)2℄1=2�min=2[(ak � ai)2 + (bk � bi)2℄Æ=21A � 1(; Æ; �min)�2Æ�1min22Æ+1 :This holds for1(; Æ; �min) = 22Æ+72�2Æ+1min e��min=2(2� e��min=2)(1� e��min=2) : �Proofs of Theorems 3.1 and 3.5. The results for the ase of individual power Pind followdiretly from the ase of Ptotal in Theorems 3.8 and 3.7 by noting that Ptotal = nPind is also aonstraint. �4.3 The Gaussian multiple relay hannel: The strategy of oher-ent multi-stage relaying with interferene anellation and anahievable rateWe now address the hannel onsidered in Theorems 3.11 and 3.12, featuring a multitude ofrelays. Eah stage of relay an be either one node or a group of nodes.We use some standard results for jointly typial sequenes whih we gather together here;see [22, Setion 8.6℄.De�nition 4.2 The set A(T )� of jointly typial sequenes f(xT ; yT )g with respet to the jointdensity funtion f(x; y) is the set of T -sequenes with empirial entropies �-lose to the trueentropies, i.e., A(T )� = n(xT ; yT ) 2 RT � RT :����� 1T log f(xT )� h(X)���� < �;����� 1T log f(yT )� h(Y )���� < �;����� 1T log f(xT ; yT )� h(X; Y )���� < �� ;
25
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where f(xT ; yT ) = TYi=1 f(xi; yi):De�nition 4.3 A(T )� (P;N) denotes the set A(T )� with respet to the joint density funtionf(x; y) = gP (x)gN (y � x) = 1p2�P exp�� x22P � � 1p2�N exp��(y � x)22N � :Lemma 4.2 Let (XT ; Y T ) be sequenes of length T drawn i.i.d. aording tof(xT ; yT ) = TYi=1 gP (xi)gN(yi � xi):Then1. Prob((XT ; Y T ) 2 A(T )� (P;N))! 1 as T !1.2. R(xT ;yT )2A(T )� (P;N) dxTdyT � 2T (h(X;Y )+�), where h(X; Y ) denotes the di�erential entropy.3. If ( ~XT ; ~Y T ) � QTi=1 gP (xi)gP+N(yi), i.e., ~XT and ~Y T are independent with the samemarginals as (XT ; Y T ), thenProb(( ~XT ; ~Y T ) 2 A(T )� (P;N)) � 2�T (S( PN )�3�):Also, for suÆiently large T ,Prob(( ~XT ; ~Y T ) 2 A(T )� (P;N)) � (1� �)2�T (S( PN )+3�):Proof of Theorem 3.11. The oding-deoding sheme is di�erent from that of [21℄, thoughwe still use a blok oding argument. We onsider B bloks of transmission, eah of T trans-mission slots. A sequene of B�M +1 indies, wb 2 f1; : : : ; 2TRg; b = 1; 2; : : : ; B�M +1 willbe sent over in TB transmission slots. (Note that as B !1, the rate TR(B �M + 1)=TB isarbitrarily lose to R for any T .)Generation of odebooksRandomly generate M2 matries Xk(b0), for k = 1; : : : ;M , and b0 = 1; : : : ;M , eah of size2TR�T , with every element independently hosen with Gaussian distribution N(0; 1�"1). TheM2 matries are revealed to all the M + 1 nodes. Let Xk(b) := Xk(b mod M); b = 1; 2; : : : ; B.Denote by xk(b; w) the w-th row of the matrix Xk(b), for w 2 f1; : : : ; 2TRg.26
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EnodingAt the beginning of eah blok b 2 f1; : : : ; Bg, every node i 2 f0; : : : ;M � 1g has estimates(see the sequel) bwb�k+1;i of wb�k+1, k � i+ 1 (with bwb�k+1;0 = wb�k+1) and sends the followingvetor of length T in the blok:~Xi(b) := MXk=i+1pPikxk(b; bwb�k+1;i):We set bwb1;i := wb1 := 0 for any b1 � 0, and xk(b; 0) := 0: (41)Every node k 2 f1; : : : ;Mg thus reeives the vetor:~Yk(b) = X0�i�M�1i6=k �ik ~Xi(b) + ~Zk(b)= X0�i�M�1i6=k MXl=i+1�ikpPilxl(b; bwb�l+1;i) + ~Zk(b)= 0B� kXl=1 l�1Xi=0 + MXl=k+1 X0�i�l�1i6=k 1CA�ikpPilxl(b; bwb�l+1;i) + ~Zk(b): (42)Let b~Y k(b) := ~Yk(b)� MXl=k+1 X0�i�l�1i6=k �ikpPil xl(b; bwb�l+1;k): (43)This will serve as an estimate by node k ofkXl=1 l�1Xi=0 �ikpPilxl(b; bwb�l+1;i);as we show in the sequel.DeodingAt the end of eah blok b 2 f1; : : : ; Bg, every node k 2 f1; : : : ;Mg (for b � k + 1 � 1)delares bwb�k+1;k = w if w is the unique value in f1; : : : ; 22Rg suh that in all the bloks27
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b� j; j = 0; 1; : : : ; k � 1:(k�j�1Xi=0 �ikpPi;k�j xk�j(b� j; w); b~Y k(b� j)� kXl=k�j+1 l�1Xi=0 �ikpPil xl(b� j; bwb�j�l+1;k))2 A(T )� ( �Pk;j; Nk;j); (44)where�Pk;j :=  k�j�1Xi=0 �ikpPi;k�j!2 (1� "1); Nk;j := k�j�1Xl=1  l�1Xi=0 �ikpPil!2 (1� "1) + �2;Otherwise, if an unique w as above does not exist, an error is delared and bwb�k+1;k is set to 0.Analysis of probability of error. Denote the event that no deoding error is made in the�rst b bloks byA(b) := f bwb1�k+1;k = wb1�k+1; for all b1 2 f1; : : : ; bg and k 2 f1; : : : ;Mgg;and let its probability be P(b) := Prob(A(b)), with P(0) := 1.Then the probability that some deoding error is made at some node k 2 f1; : : : ;Mg insome blok b 2 f1; : : : ; Bg isPe := Prob( bwb�k+1;k 6= wb�k+1; for some k 2 f1; : : : ;Mg; b 2 f1; : : : ; Bg)= BXb=1 Prob(bwb�k+1;k 6= wb�k+1 for some k 2 f1; : : : ;MgjA(b� 1)) � P(b� 1)� BXb=1 MXk=1 Prob( bwb�k+1;k 6= wb�k+1jA(b� 1)) � P(b� 1)= BXb=1 MXk=1 Pe(b; k) � P(b� 1); (45)where Pe(b; k) := Prob( bwb�k+1;k 6= wb�k+1jA(b � 1)). Hene Pe(b; k) is the probability that adeoding error happens at node k in blok b, onditioned on the event that no deoding errorwas made in the former b� 1 bloks.Next, we alulate Pe(b; k). Sine A(b� 1) is presumed to hold, for any node k we havebwb1�k+1;k = wb1�k+1; for k � b1 � b� 1:Hene, noting (41), bwb2;k = wb2 whenever b2 + k � b. Then, by (42) and (43), for all b� j withj � 0, ~Yk(b� j) = 0B� kXl=1 l�1Xi=0 + MXl=k+1 X0�i�l�1i6=k 1CA�ikpPil xl(b� j; wb�j�l+1) + ~Zk(b� j);28
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and b~Y k(b� j) = ~Yk(b� j)� MXl=k+1 X0�i�l�1i6=k �ikpPil xl(b� j; wb�j�l+1)= kXl=1 l�1Xi=0 �ikpPil xl(b� j; wb�j�l+1) + ~Zk(b� j):So, b~Y k(b� j)� kXl=k�j+1 l�1Xi=0 �ikpPil xl(b� j; bwb�j�l+1;k)= k�jXl=1 l�1Xi=0 �ikpPil xl(b� j; wb�j�l+1) + ~Zk(b� j):Hene, under the ondition A(b � 1) the deoding rule (44) is equivalent to: Eah node k 2f1; : : : ;Mg (when b� k+1 � 1) delares bwb�k+1;k = w if w is the unique value in f1; : : : ; 22Rgsuh that in all the bloks b� j, for j = 0; 1; : : : ; k � 1:(k�j�1Xi=0 �ikpPi;k�jxk�j(b� j; w); k�jXl=1 l�1Xi=0 �ikpPilxl(b� j; wb�j�l+1) + ~Zk(b� j))2 A(T )� ( �Pk;j; Nk;j): (46)Let Wb;k;j := fw 2 f1; : : : ; 2TRg : w satis�es (46)g;Wb;k := k�1\j=0Wb;k;j:Then, Pe(b; k) is the probability that wb�k+1 62 Wb;k, or some w(6= wb�k+1) 2 Wb;k, onditionedon the event that no deoding error was made in the former b� 1 bloks. Thus,Pe(b; k) = Prob(wb�k+1 62 Wb;k; or w 2 Wb;k for some w 6= wb�k+1jA(b� 1))� Prob(wb�k+1 62 Wb;kjA(b� 1)) + Prob(w 2 Wb;k for some w 6= wb�k+1jA(b� 1))� Prob(wb�k+1 62 Wb;k)P(b� 1) + Prob(w 2 Wb;k for some w 6= wb�k+1)P(b� 1) :Hene, by (45),Pe = BXb=1 MXk=1[Prob(wb�k+1 62 Wb;k) + Prob(w 2 Wb;k for some w 6= wb�k+1)℄: (47)29
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Now, by Lemma 4.2, for T large enough, we have for j = 0; 1; : : : ; k � 1,Prob(wb�k+1 62 Wb;k;j) � �;and for any w0 6= wb�k+1, Prob(w0 2 Wb;k;j) � 2�T (S( �Pk;jNk;j )�3�):Hene, Prob(wb�k+1 62 Wb;k) � k�1Xj=0 Prob(wb�k+1 62 Wb;k;j) � k�1Xj=0 � = k� �M�; (48)and Prob(w 2 Wb;k for some w 6= wb�k+1) � Xw02f1;::: ;2TRgw0 6=wb�k+1 Prob(w0 2 Wb;k)= Xw02f1;::: ;2TRgw0 6=wb�k+1 k�1Yj=0Prob(w0 2 Wb;k;j) (49)� (2TR � 1) k�1Yj=0 2�T (S( �Pk;jNk;j )�3�)= (2TR � 1)2�T (S( �Pk�2 )�3k�):The equality (49) follows from the independene of the rows xk(b; w) and also the transmissionswb, the fat that k�1Xj=0 S � �Pk;jNk;j� = S � �Pk�2� ;as well as �Pk = kXl=1  l�1Xi=0 �ikpPil!2 (1� "1):For any R satisfying (7), by hoosing T large enough, we an make "1 and � small enough suhthat for any "2 > 0Prob(w 2 Wb;k for some w 6= wb�k+1) � (2TR � 1)2�T (S( �Pk�2 )�3k�) < "2: (50)30
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Hene, by (47), (48) and (50), Pe � BXb=1 MXk=1(M� + "2)� BM2� +BM"2;whih an be made arbitrarily small by letting T !1. �Proof of Theorem 3.12. The proof follows similarly to that of Theorem 3.11. The onlydi�erene is that now all the ni nodes in eah group Ni equally share the same power Pik andtransmit oherently. We take the maximum attenuation �NiNj to ensure that every node ineah group an suessfully do the deoding. �4.4 An unbounded transport apaity an be obtained for boundedtotal power when attenuation is lowFirst we onsider the linear ase.Proof of Theorem 3.10. We onsider one soure-destination pair where the soure node isloated at 0, and the destination node is loated at n. Let the n� 1 nodes in between, loatedat 1; 2; : : : ; n � 1, be the n � 1 stages of relay. Then by Theorem 3.11, the following rate isahievable: R < min1�j�nS0� 1�2 jXk=1  k�1Xi=0 pPik(j � i)Æ!21A ; (51)with the total power onstraint Pnk=1Pk�1i=0 Pik � Ptotal. The intuitive interpretation of Pik isthe part of the power used by node i intended diretly for node k.We spei�ally hoose Pik := P(k � i)�k� ; 0 � i < k � n; (52)where � > 1; � > 1 are two onstants to be determined later, andP := (�� 1)(� � 1)�� Ptotal: (53)Using (29), it is easy to hek that the total power onstraint Ptotal holds.For 3��� � > 0, we now establish the following lower bound usable in the R.H.S. of (51):jXk=1  k�1Xi=0 pP(k � i)�=2k�=2(j � i)Æ!2 = 
(j3�����2Æ): (54)31
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For 3� �� � > 0, we havejXk=1  k�1Xi=0 pP(k � i)�=2k�=2(j � i)Æ!2
� Pj2Æ jXk=1  k�1Xi=0 1(k � i)�=2!2 1k�= Pj2Æ jXk=1  1k�=2 k�1Xi=0 1(1� i=k)�=2!2 1k�� Pj2Æ jXk=1 � 1k�=2 Z k�10 1(1� x=k)�=2 dx�2 1k�= Pj2Æ jXk=1  kk�=2 Z k�1k0 1(1� y)�=2dy!2 1k�� 0Pj2Æ jXk=2 k2���� � 0Pj2Æ Z j2 x2����dx ( for j � 2)= 0Pj2Æ j3���� � 23����3� �� �= 
(j3�����2Æ);where 0 :=  Z 1=20 1(1� y)�=2dy!2 > 0. This establishes (54).Now we proeed by analyzing two ases.Case 1. Æ < 12 .In this ase, we spei�ally hoose � > 1 and � > 1 suh that3� �� � � 2Æ > 0: (55)Then by (54) and (55), there exists some P > 0 suh that for any j,jXk=1 k�1Xi=0 pP(k � i)�=2k�=2(j � i)Æ!2 � P:Thus, by (51), for any n, any R < S( P�2 ) is ahievable. Without loss of generality, this meansthat any R < S( P�2 ) is ahievable with power onstraint Ptotal for any single soure-destinationpair. Furthermore, sine �0;n = n, R�n is an ahievable network transport with power onstraintPtotal, whih tends to in�nity as n!1. 32
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Case 2. 12 � Æ < 1.In this ase, we spei�ally hoose � > 1 and � > 1 suh that4� �� � � 2Æ > 0: (56)Note that 3 � � � � � 2Æ < 0. Hene the minimum of (54) over j = 1; 2; : : : ; n is attained atj = n. So by (56), we haven min1�j�nS0� 1�2 jXk=1  k�1Xi=0 pP(k � i)�=2k�=2(j � i)Æ!21A = 
(n4�����2Æ)!1; as n!1:This means that an arbitrarily large network transport is ahievable with a �xed total poweronstraint Ptotal. �Now we turn to the planar ase.Proof of Theorem 3.9. The idea of the proof is similar to that of the linear ase in Theo-rem 3.10. The only di�erene is that in the planar ase there are more nodes to help.We still onsider one soure-destination pair where the soure node s is loated at (0; 0) andthe destination node d is loated at (rq; 0), with q a positive integer to be determined.We need the ooperation of r� 1 groups of relay nodes: Group Ni onsists of ni nodes in aneighborhood of the node (iq; 0), for i = 1; : : : ; r � 1, with N0 = fsg, n0 = 1. Eah Group Niorresponds to the node i in the linear ase: The ni nodes equally share the power Pik de�nedin (52) and oherently transmit.Then by Theorem 3.12, the following rate is ahievableR < min1�j�r S0� 1�2 jXk=1  k�1Xi=0 pPik=ni � ni�ÆNiNj !21A ; (57)where �NiNj is the maximum distane between any node in Group Ni and any node in GroupNj.For any i = 1; 2; : : : ; r� 1, we spei�ally hoose Group Ni to be the set of nodes: f(u; v) :iq � u � iq+ iq�1� 1;�iq�1 � v � iq�1g. It is easy to hek that these groups are disjoint fromeah other and ni > i2(q�1). Furthermore, for any 0 � i < j < r, �ij < jq�iq+iq�1+jq�1+jq�1 <3jq. Hene by (57), the following rate is ahievable:R < min1�j�r S0� 1�2 jXk=1  k�1Xi=0 pPik � iq�13ÆjqÆ !21A : (58)
33
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Similarly to the linear ase, for 1 + 2q� �� � > 0, we an prove the following lower boundusable in the R.H.S. of (58):jXk=1  k�1Xi=0 pP � iq�1(k � i)�=2k�=23ÆjqÆ!2 = 
(j1+2q�����2qÆ): (59)For 1 + 2q � �� � > 0, we havejXk=1  k�1Xi=0 pP � iq�1(k � i)�=2k�=23ÆjqÆ!2
� P32Æj2qÆ jXk=1  k�1Xi=0 iq�1(k � i)�=2!2 1k�= P32Æj2qÆ jXk=1  kq�1k�=2 k�1Xi=1 (i=k)q�1(1� i=k)�=2!2 1k�� P32Æj2qÆ jXk=1 �kq�1k�=2 Z k�10 (x=k)q�1(1� x=k)�=2dx�2 1k�= P32Æj2qÆ jXk=1  kqk�=2 Z k�1k0 yq�1(1� y)�=2dy!2 1k�� 0P32Æj2qÆ jXk=2 k2q���� � 0P32Æj2qÆ Z j2 x2q����dx (for j � 2) (60)= 0P32Æj2qÆ j1+2q���� � 21+2q����1 + 2q � �� �= 
(j1+2q�����2qÆ); (61)where 0 :=  Z 1=20 yq�1(1� y)�=2dy!2 > 0. Note that the inequality in (60) holds for any value of2q � �� �. This establishes (59).Now we proeed with two ases.Case 1. Æ < 1.In this ase, we hoose q suh that1 + 2q � �� � � 2qÆ > 0: (62)Then by (59) and (62), there exists some P > 0 suh that for any j,jXk=1  k�1Xi=0 pP � iq�1(k � i)�=2k�=23ÆjqÆ!2 � P :34
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Then by (58), for any r, any R < S( P�2 ) is ahievable. Without loss of generality, this meansthat any R < S( P�2 ) is ahievable with power onstraint Ptotal for any single soure-destinationpair. Furthermore, R �rq is an ahievable network transport with power onstraint Ptotal, whihtends to in�nity as r!1.Case 2. 1 � Æ < 32 .In this ase we hoose q suh that1 + 3q � �� � � 2qÆ > 0: (63)Then by (59) and (63), we haverq min1�j�r S0� 1�2 jXk=1  k�1Xi=0 pP � iq�1(k � i)�=2k�=23ÆjqÆ!21A = 
(r1+3q�����2qÆ)!1; as r!1:This means that an arbitrarily large network transport is ahievable with a �xed total poweronstraint Ptotal. �4.5 A transport apaity of 
(n) is ahievable in planar networks,and feasible ratesFirst we show what is ahievable in a regular planar network.Proof of Theorem 3.2. We onsider a regular planar network where every node ` is a soure,with its destination d` hosen as one of its four nearest neighbors.Eah node independently generates its odebook with Gaussian distribution with varianeP = Pind � �, where � > 0. Every destination looks for the signals transmitted by its soure,treating all the other transmissions as Gaussian noise. Hene any rate R` satisfying the followingis ahievable for every soure-destination pair (`; d`):R` < S � e�2P2(; Æ)P + �2� ;provided 2(; Æ)P is an upper bound on the interferene, i.e.,2(; Æ)P � Xi2Ni6=`;d` e�2�id`P�2Æid` ; (64)We now show this bound to be true irrespetive of the number of nodes n in N .
35
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For the ase  = 0 and Æ > 1, this follows from the summability of the right hand side of(64) for Æ > 1, sine, irrespetive of the number n of nodes in N ,Xi2Ni6=`;d` P�2Æid` � 4� 2 1Xi=1 1i2Æ + Z 11 Z 10 1(x2 + y2)Æ dxdy!P� 4� �2 � 2Æ2Æ � 1 + �4Æ � 4�P� 16Æ2 + (2� � 16)Æ � �(Æ � 1)(2Æ � 1) P� 2(; Æ)P:Next onsider the ase  > 0. ThenXi2Ni6=`;d` e�2�id`P�2Æid` � 4� 2 1Xi=1 e�2i + Z 11 Z 10 e�2(x2+y2)1=2dxdy!P� 4� � 2e�21� e�2 + e�22 �P� 4(1 + 4)e�2 � 4e�42(1� e�2) P� 2(; Æ)P:Hene the total ahievable transport apaity is n �S � e�2P2(; Æ)P + �2� ; for every P < Pind,establishing the result of Theorem 3.2. �Proof of Theorem 3.3. Note that the maximum distane that a signal has to travel on anyhop is ��. This an used to lower bound the reeived signal strength. Moreover, we an provethat the total interferene at any node j is bounded as follows:Using the fat that for any d0 � �min,1d2Æ0 � 16��2min Z �4��4 Z �min20 1(d20 + r2 � 2rd0 os �)Æ rdrd�;we have for  = 0 and Æ > 1,Xi2Ni6=j P�2Æij � 16��2min Z ��� Z 1�min2 Px2Æ xdxd�= 22+2Æ�2Æmin(Æ � 1)P36
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and for  > 0, Xi2Ni6=j e�2�ijP�2Æij � 16P��2min Z ��� Z 1�min2 e�2xx2Æ xdxd�� 24+2ÆP�1+2Æmin Z 1�min2 e�2xdx= 23+2Æe��min�1+2Æmin P:The rest of the proof follows as above in Theorem 3.2. �Proof of Theorem 3.4. Suppose that n soure-destination pairs are randomly hosen asfollows: Choose 2n points, (a1; a2; : : : ; ; an) and (b1; b2; : : : ; ; bn), randomly (uniformly i.i.d.) inthe domain of the regular planar network, whih is a square of side pn� 1. Now let s` and d`be the nodes (whih are loated only at integral oordinates (i; j) with 1 � i; j � pn) nearestto a` and b`, respetively. Then the n soure-destination pairs are (s`; d`). (Sine a node mayserve as a soure for several destinations, or as a destination for several soures, the de�nitionof feasible rate in Setion 3.1 has to be modi�ed appropriately).To route the traÆ, we follow the sheme of [8℄. Construt an axis parallel mini-square ofside length 1 entered around eah node. These mini-squares will play the role of the \ells"onsidered in [8℄. Pakets for a soure-destination pair (s`; d`) will be relayed from node tonode in the order that the straight line joining a` and b` intersets the mini-squares. (Diagonalhops our with probability zero). Thus, eah straight line (ai; bi) passing through a mini-square means that the node in the mini-square has to relay that route's traÆ to one of its fournearest neighbors.Note that the straight lines f(a`; b`) : 1 � ` � ng are i.i.d. (indeed this is the reason forresorting to this onstrution of soure-destination pairs). Also, the probability that a straightline passes through a given mini-square is less than q log nn , for some onstant . Using thedimension bounds in [8℄ in the uniform weak law of large numbers of Vapnik-Chervonenkis[26℄, it follows that Prob(Every mini-square has no more than 0pn logn straight lines passingthrough it) ! 1, as n ! 1. Now suppose that every soure-destination pair arries a traÆof rate less than Rmin0pn log n . Then Prob(Every node needs to send no more than rate Rmin to oneof its four nearest neighbors)! 1, as n!1.However, as already shown in the proof of Theorem 3.2, in a regular planar network, everynode an indeed send at a �xed positive rate Rmin > 0 to any one of its four nearest neighbors.Thus a rate of Rmin0pn log n an indeed be supported for all the soure-destination pairs simul-taneously, with probability approahing one as n!1.Finally, sine there are n soures, and the mean distane between a soure and its destinationis 
(pn), it follows that a transport apaity of 
( nplog n) is supported, again with probabilityapproahing 1 as n!1. �37
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4.6 Networks with transport apaity CT = �(n�) for 1 < � < 2under low attenuation, and the optimality of oherent multi-stage relaying with interferene anellationWe now exhibit networks that allow a �(n�) saling law under low attenuation.Proof of Theorem 3.6. We onsider the ase of one soure-destination pair, where thesoure node is loated at 0 and the destination node is loated at n�. Let the n� 1 relay nodesbe loated at i�, i = 1; 2; : : : ; n� 1. Then by Theorem 3.11, the following rate is ahievableR < min1�j�nS0� 1�2 jXk=1 k�1Xi=0 pP 0ik(j� � i�)Æ!21A ; (65)with P 0ik := P 0(k � i)� ; 0 � i < k � n;where 1 < � < 3� 2�Æ is some onstant and P 0 := �� 1� Pind is suh that the power onstraintfor every node is satis�ed.Similarly to (54), we an prove the following lower bound on the R.H.S. of (65):jXk=1  k�1Xi=0 pP 0(k � i)�=2(j� � i�)Æ!2 = 
(j3���2�Æ):If 3� �� 2�Æ > 0, then the minimum over 1 � j � n ours at j = 1, and is positive. Thus apositive rate is ahievable provided one an satisfy 3� �� 2�Æ > 0, as well as � > 1.To satisfy the above inequalities, we simply hoose any small � > 0, and onsider a networkwith � := 1Æ � �. Then we hoose � = 1 + �Æ. Suh a network an provide a �xed positiverate from soure 0 to destination n, irrespetive of n. Sine the distane between soure anddestination is n�, it yields a transport apaity of 
(n�).To show the optimality of this order, we now prove that O(n�) is also an upper bound. Firstwe note that the total power reeived by all the other nodes, from any andidate soure nodej, is bounded:j�1Xi=0 Pind(j� � i�)2Æ + nXi=j+1 Pind(i� � j�)2Æ � j�1Xi=0 Pind(j � i)2Æ + nXi=j+1 Pind(i� j)2Æ � 4Æ2Æ � 1Pind <1:Hene, if we take the ut-set around the andidate soure node j and apply Lemma 4.1, itfollows that the ahievable rate is bounded above. Noting that the soure-destination distaneis at most n�, we have O(n�) as an upper bound on the optimal saling for this one soure ase.Hene �(n�) is the optimal saling. It is ahieved by oherent multi-stage relaying withinterferene anellation, whih is therefore the optimal strategy for information transmissionin the networks. �38
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5 Conluding remarksWe have examined the problem of how muh information an be transported over wirelessnetworks, and what are the optimal strategies for doing so. In the best tradition of informationtheory, one wishes to determine the ultimate limits to what is ahievable without presupposingthat pakets destrutively \ollide" if they are from nearby transmitters, or that they anbe reeived only if signal-to-interferene ratio is large, et. The diÆulty is that a multitudeof nodes an ooperate in very ompliated and sophistiated ways, and standard modes ofooperation suh as broadast, multiple-aess, or relaying, only srath the surfae. They donot begin to exhaust the realm of the possible. Also, even simple networks, suh as the threenode relay hannel, or the two-by-two interferene annel, are unsolved to date.We make progress in this area by asking for less. Instead of studying just the apaityregion, whih is the set of all vetors of feasible rates, we study the distane-weighted sum ofratesPR` ��`, whih we have alled the transport apaity. There is a seond sense in whih weask for less. We study saling laws for the transport apaity as the number n of nodes in thenetwork grows. The preonstant in the saling law is of ourse important, but it is seondaryto the rate of growth. In any ase, we provide bounds for the preonstant for every n, thusharaterizing the optimal ahievable, at least in some senarios. Finally, distane plays anexpliit role in our theory in that we expliitly model signal attenuation.Two broad results may be worthy of note. When either there is absorption ( > 0), orthe path loss exponent Æ > 3, O(n) is an upper bound on the transport apaity of all planarnetworks. This upper bound an be realized in regular planar networks by multi-hop operation,whih is onsequently the optimal strategy for the nodes to ooperate, at least up to order.Pakets need only be relayed from node to node, with all interferene simply being regardedas noise at eah hop. This mode of operation is urrently the subjet of muh attention in theprotool development ommunity.In ontrast, when there is absolutely no absorption ( = 0) and the attenuation is very lowwith path loss exponent 12 < Æ < 1, there are networks where the transport apaity is �(n 1Æ��).The strategy whih realizes this, and whih is onsequently an optimal strategy, is oherentmulti-stage relaying with interferene anellation: At eah stage of relaying, all upstream nodesoherently transmit, and all reeivers use interferene anellation at eah stage. An ahievablerate, superior to earlier results, is given for the Gaussian multiple relay hannel with a singlesoure-destination pair employing suh a strategy.Open questions abound. What happens for intermediate values of the path loss exponent,when there is absolutely no absorption, is still unresolved. Our hannel model is simplisti.Muh remains to be done.
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